Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry

نویسندگان

  • Klas Tybrandt
  • Suresh Babu Kollipara
  • Magnus Berggren
چکیده

Fast scan cyclic voltammetry (FSCV) is an electrochemical method commonly used in neuroscience for spatiotemporal measurement of the concentration of dopamine and other electroactive species. Since FSCV involves wide bandwidth measurements of low currents, the technique is normally very sensitive to electrical noise and is typically performed inside a Faraday cage. In order to reduce the electrical noise and to enable measurements in an unshielded environment, we take use of an organic electrochemical transistor (OECT) to amplify the FSCV signals. OECTs based on the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) were microfabricated and characterized. A patterned 10 μm gold microelectrode was used as the sensing electrode and the FSCV signal was amplified by the OECT. With this approach, successful measurements of dopamine concentrations in the 10 μM range were performed in a completely unshielded measurement setup. Our results demonstrate how OECTs can successfully be used, in an on-site amplification application to characterize biochemical signals, thus open up new trails for flexible multifunctional organic bioelectronics systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Biosensor for Determination of 5-Fluorouracil based on Gold Electrode Modified with Au and Polyaniline Nanoparticles and FFT Square Wave Voltammetry

In the present study, a new biosensor for 5-Fluorouracil was described using modified goldelectrode and Fast Fourier transform square wave voltammetry (FFT SWV). Calf thymus DNAimmobilization was on a gold electrode decorated with polyaniline and gold nanoparticles. Theelectrochemical characteristics of the electrodes were investigated by cyclic voltammetry, andelectroch...

متن کامل

Determination of Riboflavin by Nanocomposite Modified Carbon Paste Electrode in Biological Fluids Using Fast Fourier Transform Square Wave Voltammetry

Herein, fast Fourier transformation square-wave voltammetry (FFT-SWV) as a novel electrochemical determination technique was used to investigate the electrochemical behavior and determination of Riboflavin at the surface of a nanocomposite modified carbon paste electrode. The carbon paste electrode was modified by nanocomposite containing Samarium oxide (Sm2O3)/reduced gra...

متن کامل

Synergetic signal amplification of multi-walled carbon nanotubes-Cetyltrimethylammonium Bromide and Poly-L-Arginine as a highly sensitive detection platform for Rutin

In this research, a glassy carbon electrode was coated with a thin layer of multi-walled carbon nanotubes in the presence of the surfactant and subsequently was electro-polymerized with Poly-L-arginine (P-L-Arg). The prepared electrode was used as an effective sensor for the quantitative detection of Rutin (Ru). The fabricated electrode exhibited good electrochemical performance with low electr...

متن کامل

Synergetic signal amplification of multi-walled carbon nanotubes-Cetyltrimethylammonium Bromide and Poly-L-Arginine as a highly sensitive detection platform for Rutin

In this research, a glassy carbon electrode was coated with a thin layer of multi-walled carbon nanotubes in the presence of the surfactant and subsequently was electro-polymerized with Poly-L-arginine (P-L-Arg). The prepared electrode was used as an effective sensor for the quantitative detection of Rutin (Ru). The fabricated electrode exhibited good electrochemical performance with low electr...

متن کامل

The investigation of pyrocatechol electrochemical mechanism in presence of nitrite ion on platinum electrode

In this study, the electrochemical mechanism of catechol in presence and absence of nitrite ion, is investigated in phosphate buffer medium (pH=7) using platinum electrode through cyclic voltammetry method in various scan rates. Electrochemical oxidation of catechol showed how quinone has changed to o-benzoquinone and also how o-benzoquinone has reacted with nitrite ion and potential scan rate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014